Multi-Species, Multi-Spectral, Multi-Satellite retrievals of trace gases <u>Vivienne Payne¹</u>, Dejian Fu¹, Susan Kulawik², Kevin Bowman¹, Kazuyuki Miyazaki³ #### With special thanks to: Helen Worden⁴, Karen Cady-Pereira⁵, Dylan Millet⁶, Kelley Wells⁶, Emily Fischer⁷, Shashan Yu¹, Jessica Neu¹, John Worden¹, Larry Flynn⁸, Yong Han⁸, Larrabee Strow⁹, Evan Fishbein¹, Bill Irion¹, Vijay Natraj¹ and to the TES, AIRS, OMI, CrIS, OMPS, TROPOMI teams - ⁰¹ NASA Jet Propulsion Laboratory, California Institute of Technology - ⁰² NASA Ames Research Center - ⁰³Japan Agency for Marine-Earth Science and Technology - ⁰⁴National Center for Atmospheric Research - ⁰⁵Atmospheric and Environmental Research - ⁰⁶University of Minnesota - ⁰⁷ Colorado State University - ⁰⁸ NOAA Center for Satellite Applications and Research, USA - ⁰⁹ University of Maryland Baltimore County, USA ## Spectral Regions Used in JPL MUSES (Multi-Spectra, Multi-Species, Multi-Sensors) Algorithm Measurements from TIR (LW) are sensitive to the free-tropospheric trace gases. Measurements from UV-Vis-NIR (SW) are sensitive to the column abundances of trace gases. Joint LW/SW measurements can distinguish upper troposphere from lower troposphere. #### Retrieval characteristics and diagnostics JPL MUSES algorithm delivers both retrieved trace gas concentration profiles and observation operators needed for trend analysis, climate model evaluation, and data assimilation. E.g., a data assimilation system applies an observation operator (H) $$\mathbf{y}^{s} = \mathbf{H}(\mathbf{x}) = \mathbf{x}_{a} + \mathbf{A}(\mathbf{x}_{model} - \mathbf{x}_{a})$$ \mathbf{y}^{s} is the model profiles; \mathbf{x}_{a} is *a priori* profiles used in the retrievals; \mathbf{A} is the averaging kernels of satellite observations. After applying observation operator to model profiles, the satellite-model differences (\mathbf{y}^{o} - \mathbf{y}^{s}) is not biased by the *a priori* used in the retrievals. $$\Delta y = y^{o} - y^{s} = A(x_{true} - x_{model}) + \varepsilon$$ ## Thermal Infrared ## Trace gas products from Aura-TES #### **TES version 7 trace gas products** Ozone (O_3) O₃ Instantaneous Radiative Kernels **Carbon Monoxide (CO)** Methane (CH₄) Carbon Dioxide (CO₂) Nitrous Oxide (N₂O) **Deuterated Water Vapor (HDO)** **Carbonyl Sulfide (OCS)** Ammonia (NH₃) Peroxyacetyl Nitrate (PAN) Formic Acid (HCOOH)* Methanol (CH₂OH) * Feature is in spectral gap for S-NPP CrIS Omnipresen ## Peroxyacetyl nitrate (PAN) - PAN plays key roles in - Long-range transport of ozone - Redistribution of nitrogen in the troposphere - PAN is the route for NO_x to reach the remote troposphere - PAN couples biogenic emissions to the nitrogen cycle, increasing the spatial range of NO_x - PAN extends the air quality impacts of fires ## PAN from TES ## PAN from CrIS - Opportunities offered by CrIS PAN compared to TES PAN: - Extension of TES record in time - Better signal to noise and drastically improved spatial coverage - New constraints on chemical models at global and regional scales # Methanol (CH₃OH) - Methanol is the most abundant NMVOC - Major source of carbon monoxide and formaldehyde - Leads to formation of ozone and secondary organic aerosols - Methanol has both biogenic and combustion sources - Resolution of biogenic from other sources remains a challenge - Carbon monoxide can be used as a tracer, but CO also has biogenic sources - Value of tracers with no biogenic sources [e.g. acetylene (C₂H₂)] - Previous spaceborne obs of C₂H₂ from IASI (Duflot et al. [2013]) - CrIS has lower noise than IASI..... ## Methanol residuals Methanol feature lies within the ozone band. Ozone must be fit first. # Methanol retrievals from CrIS ## Isoprene from CrIS #### Isoprene: - Biogenic VOC, emitted by plants - Shapes tropospheric composition through impacts on ozone, aerosols, the atmosphere's oxidizing capacity and the nitrogen cycle NASA Roses-funded activities: (Aura ST/ACMAP Program) Isoprene retrievals from CrIS (Fu et al.) Combine CrIS isoprene, Aura OMI (HCHO, NO₂) and the GEOS-Chem model to advance understanding of isoprene oxidation and HCHO production across NO_x regimes. (**Millet et al.**) # Multi-spectral retrievals # Multi-spectral retrievals of ozone Multi-spectral retrievals can offer improved sensitivity to the lower troposphere #### Assimilated Global Ozone Fields - Joint AIRS/OMI ozone profiles have been assimilated into CHASER system. - \triangleright CHASER system assimilated the OMI (NO₂), GOME-2 (NO₂) MLS (HNO₃ and O₃), MOPITT (CO) for KORUS-AQ ,recently assimilated AIRS/OMI ozone profile data ### Extension to Joint CrlS/OMPS O₃ Retrievals - MUSES has been applied to joint CrIS/OMPS ozone retrievals over Africa on October 21, 2013. - > The elevated ozone concentrations (2-20 degree south) are associated with biomass burning. - ➤ Joint CrIS/OMPS O₃ and CrIS CO retrievals using MUSES will support the NOAA FIREX flight campaign (NOAA CPO AC4 program) - Assimilation within RAQMS (R. B. Pierce) ## Multispectral CO from CrIS and TROPOMI MOPITT's unique thermal IR/near IR multispectral CO measurements, which are able to separate near-surface from the free troposphere, have no planned follow-on. **Fu et al, AMT (2016)**: Combining CrIS data with the Sentinel 5p TROPOMI near IR data would provide comparable vertical sensitivity to MOPITT but with daily coverage. # NASA ### Summary - Suomi-NPP and JPSS offer many exciting opportunities for advancing understanding of tropospheric composition and chemistry - Value of multiple species for constraints on chemical models - Value of multiple wavelength regions for vertical sensitivity - \triangleright Joint AIRS/OMI and CrIS/OMPS retrieved O₃ profiles can distinguish the abundances in the upper troposphere from the lower troposphere. - Opportunities for multi-satellite retrievals to extend EOS-era data records - Observation operators and error estimates are key to the effective utilization of the retrievals. # Backup ## PAN from CrIS ## TES methanol # Joint AIRS/OMI and TES observations on August 23, 2006 during TexAQS Aircraft Flight Campaign #### Joint AIRS/OMI ozone retrievals > Show best agreement to TES, in comparisons to each instrument alone #### CrIS Carbon Monoxide Maps for KORUS-AQ #### **CrIS retrievals using JPL MUSES algorithm** - Nine times higher spatial resolution vs. the CrIS operational data products - > Provides full observation operators (averaging kernels, uncertainty estimates, a priori profiles) - ➤ CrIS alone will be used for extending the MOPITT TIR CO data, while combines TROPOMI measurements to extend MOPITT TIR/NIR multi-spectral CO data. #### CrIS Ozone Maps for KORUS-AQ #### CrIS retrievals using JPL MUSES algorithm - Nine times higher spatial resolution vs. the CrIS operational data products - > Provides full observation operators (averaging kernels, uncertainty estimates, a priori profiles) - ➤ Working on combining OMPS measurements, joint CrIS/OMPS could improve the spatial coverage by a factor of three, in comparisons to joint AIRS/OMI. ### Joint AIRS/OMI O₃ Retrievals - Retrieved joint AIRS/OMI ozone - Three-day averaged, May 18 to 20, 2016. - Total ozone shows strong latitudinal dependence, dominated by stratospheric ozone. - Tropospheric/upper tropospheric ozone enhancement over the ocean (Korean peninsula <-> Japan), could be the natural influences of stratosphere-troposphere exchange (STE) process. ### Impacts of Joint AIRS/OMI O₃ Profiles on Data Assimilation - > Joint AIRS/OMI ozone profiles have been assimilated into CHASER system. - \triangleright CHASER system assimilated the OMI (NO₂), GOME-2 (NO₂), MLS (HNO₃ and O₃), MOPITT (CO) for KORUS-AQ ,recently assimilated AIRS/OMI ozone profile data ## Combining CrIS, OMPS-NM and OMPS-NP #### Available trace gas products from NASA/NOAA thermal-IR sounders* | | Molecule | AIRS v6 | AIRS OE J. Warner et al | AIRS NUCAPS | TES v7 | CrIS NUCAPS | CrIS
AER/NCAR ⁺ | |----------------|-------------------------------|----------|--------------------------|-------------|--------|-------------|-------------------------------| | | O ₃ | Υ | | Y | Υ | Υ | | | | O3 IRKs | | | | Υ | | | | _ | со | Υ | Υ | Υ | Υ | Υ | + | | | CH ₄ | Υ | | Υ | Υ | Υ | | | | CO ₂ | Υ | | Υ | Υ | Υ | | | | N ₂ O | | Υ | Υ | Υ | Υ | | | | HDO | | | | Υ | | | | | HNO ₃ | | Υ | Y | | Υ | | | _ | ocs | AIRS gap | AIRS gap | AIRS gap | Υ | CrIS gap | CrIS gap | | 20 | NH ₃ | | Y | | Y | | + | | | CH₃OH | | | | Υ | | | | ati | нсоон | AIRS gap | AIRS gap | AIRS gap | Υ | CrIS gap | CrIS gap | | | PAN | | | | Υ | | | | CO | SO ₂ | flag | | Y | | Y | | | concentrations | C ₂ H ₂ | | | | | | | | U | C ₂ H ₄ | | | | | | | ^{*}Attempt to capture range of products avail – please excuse omissions/misunderstandings Observable at enhanced ⁺ Not yet publicly available, but will be in forseeable future